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Introduction. In Part B, beginning at Figure 23, I was led to make much of the
fact that the quantum mechanical moving mean

〈position〉bouncing wavepacket

does not much resemble—except at brief, irregularly-spaced intervals—the
classical motion of a bouncing ball. It has occurred to me—but only after
“completing” preparations for the seminar ( February ) that was to have
been based upon Parts A & B—that the comparison may be unfair: perhaps it
would be more appropriate to compare the quantum statistics with statistical
properties of a population of classical bouncing balls. It is my intention here to
explore aspects of that idea.

1. Preliminaries. As was remarked on page 3 of Part B, the maximal height a
of the bounce and the period τ stand in the relation

a = 1
2g

(
1
2τ

)2

so cannot be specified independently. If we find it most convenient to take a to
be the independent parameter, then we have

τ =
√

8a/g

If (by convenient convention) we start the clock at a moment of maximality
then

x(t) = − 1
2g(t + 1

2τ)(t− 1
2τ) : − 1

2τ < t < + 1
2τ
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which in a-parameterization becomes

x(t) = − 1
2g

(
t2 − 2a/g

)
= a− 1

2g t
2 : −

√
2a/g < t < +

√
2a/g

On the indefinitely extended time line we therefore have

x(t) =
∑

n

[
a− 1

2g
(
t− n

√
8a/g

)2] (1.1)

· UnitStep[
[
a− 1

2g
(
t− n

√
8a/g

)2]
]

Fourier analytic methods are shown in §2 of Part B to lead to this alternative
description of that same bouncing ballistic motion:

x(t) = 1
8gτ

2
[

2
3 + 4

π2

{
1
12 cos

[
2π t

τ

]
− 1

22 cos
[
4π t

τ

]
+ 1

32 cos
[
6π t

τ

]
− · · ·

}]

In a-parameterization we therefore have

x(t) = a
[

2
3 + 4

π2

{
1
12 cos

[
π
√

g
2a t

]
− 1

22 cos
[
2π

√
g
2a t

]

+ 1
32 cos

[
3π

√
g
2a t

]
− · · ·

}]

= a
[

2
3 − 4

π2

∞∑
k=1

(−)k 1
k2 cos

[
kπ

√
g/2a t

]]
(1.2)

Equation (1.1) is exact, while truncated instances of (1.2) are only approximate,
but it has been my numerical experience that Mathematica finds it marginally
easier to work with the Fourier series, and that if the series is carried to order
ten or greater the imprecision is insignificant.

2. Dropped population of bouncers. Let balls be released simultaneously from
initial heights a1, a2, . . . , aN . Their respective positions at time t can, by (1.2),
be described

xi(t) = ai

[
2
3 − 4

π2

∞∑
k=1

(−)k 1
k2 cos

[
kπ

√
g/2ai t

]]
: i = 1, 2, . . . ,N (2)

which has been used to construct Figure 1.1

3. Motion of the mean. Let non-negative weights w1, w2, . . . , wN be assigned
to the members of such a population, and let it be required that they sum to

1 Equation (2) requires—and Mathematica confirms—that

− 4
π2

∞∑
k=1

(−)k 1
k2 = 1

3
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unity:
∑

wi = 1. The instantantaneous location of the mean (or 1st moment,
or “center of mass”) of the population is defined

X(t) ≡ 〈x(t)〉 ≡
∑

i

wixi(t) (3)

and higher moments are defined similarly:

〈[x(t)]p〉 ≡
∑

i

wi[xi(t)]p : p = 2, 3, . . .

To explore the implications of the simple construction (3) I assign to the
heights ai and weights2 wi illustrative values taken from the discussion in Part B
of a particular “bouncing Gaussian wavepacket,” and rely upon the graphical
resources of Mathematica. More particularly: at page 32 in Part B we encounter

Ψ(x, 0; A, s) = 1√
s
√

2π
e−

1
4

[x− A
s

]2

: A � s

and elect to set A = 15 and s = 1.75 = 7
4 . So we write

P (x) ≡
∣∣Ψ(

x, 0; 15, 7
4

)∣∣2 = 4
7
√

2π
e−

1
2

[
4
7 (x− 15)

]2

(4)

which is plotted below:

10 15 20

0.1

0.2

Figure 1: Graph of the normalized Gaussian (4) that we have
borrowed from Part B.

Looking to the figure, it becomes natural to

let the ai range on
{
10, 11, . . . ,151515 , . . . , 19, 20

}

2 It is a curious fact that the “assignment of weights” is, in the present
physical context, literally that: an assignment of weights!
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and to set

w10 =
∫ 10.5

9.5

P (x) dx, w11 =
∫ 11.5

10.5

P (x) dx, . . . , w20 =
∫ 20.5

19.5

P (x) dx

Thus do we obtain
w10 = 0.0042
w11 = 0.0177
w12 = 0.0538
w13 = 0.1193
w14 = 0.1923
w15 = 0.2254
w16 = 0.1923
w17 = 0.1193
w18 = 0.0538
w19 = 0.0177
w20 = 0.0042




(5)

for which (because I have, near the center of the list, done some fudging in the
last decimal places) it is exactly the case that

20∑
i=10

wi = 1.0000

10 15 20

0.1

0.2

Figure 2: Bar chart display of the data (5), on which has been
superimposed the Gaussian (4) from which the data were obtained.

Look now to the following figures and their captions:
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10 20 30 40 50

10

15

Figure 3: Superimposed orbits of balls dropped from a = 14, 15, 16.
The first and last were computed in 10-term Fourier approximation
(1.2), while the case a = 15—shown in red—was obtained from the
exact equation (1.1).

20 40 60

10

15

Figure 4: Initial motion of the center of mass of a Gaussian
population of classical bouncing balls. The red orbit—obtained as
explained in the preceding caption—serves as a “clock.”
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50 100 150 200 250 300 350

10

Figure 5: Longer-term motion of the mean position or center of
mass, showing extinction & revival.

150 160 170 180

10

Figure 6: Magnified view of motion of the mean during a typical
extinction era. Note the frequency-doubling.

350 360 370 380

10

Figure 7: Magnified view of motion of the mean during a typical
revival era. The central frequency (a = 15) is clearly predominant;
neighboring frequencies have distorted the shape of the oscillation,
and have conspired to produce a noticeable phase shift .
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4. Discussion of the experimental results in hand.Observation & experiment can
suggest theories, can contradict theories, can support theories but can never
“confirm” theories: that is true of physical experiment, and no less true of
“mathematical experiments” of the sort reported above. That said, it remains
nevertheless the case that Figures 4–7 do bear a striking resemblance to figures
encountered in §13 of Part B. See in this same connection the following figures:

200 400 600 800

10

15

Figure 8: Motion of the center of mass of a classical population
of bouncing balls, the masses of which were at the outset normally
distributed.

200 400 600 800

10

15

Figure 9: Quantum motion of the expected position of a single
particle that was initially in a Gaussian state.
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It is impossible not to infer that
• the classical motion of the center of mass of a population of bouncers, and
• the quantum mechanical motion of the expected position 〈x〉

are in qualitatively agreement, impossible to suppose that that agreement is
an “accidental/exceptional” consequence of the specific numbers that we fed
into our calculations—that it is not, in short, typical of the general case. More
refined experiments (not reported here) suggest, moreover, that as we
• carry the classical Fourier series (1.2) to higher order, and
• “ refine the population” in the sense described below

the classical/quantum agreement becomes precise.

10 15 20

0.1

0.2

10 15 20

0.1

0.2

Figure 10: The “course grained” population of eleven particles
to which Figure 2 refers has here been replaced by a population of
unlimitedly many particles, each of which has infinitesimal weight,
but the distribution and collective weight of which is the same as it
was before. “Refinement of the population” is identical in essence
to the “lattice refinement” that is basic to one common approach to
the classical field theory : see Figure 3 in Chapter 1 of classical
theory of fields ().

How are we to account for the seeming fact that two radically different theories
—one intensely quantum mechanical (relying critically upon detailed spectral
properties of a Schrödinger equation, upon the principle of superposition), the
other entirely classical (no �’s, no matrix elements or quantum interference
terms)—give identical results?

In the quantum theory of a bouncing ball (Part B) we worked in the
Schrödinger picture and x-representation, writing

〈x〉t =
∫

ψ∗(x, t)xψ(x, t) dx (6)

In our classical theory of a bouncing population we used |ψ∗(x, 0)ψ(x, 0)| to
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configure the initial design of the population, and let the laws of classical
mechanics take over. To symbolize the latter procedure, let

x(t; a) ≡ expression on the right side of (1)

describe the classical motion of the bouncer that was dropped at time t = 0
from height a.3 To the ball dropped from height ai we assigned weight

wi =
∫ 1

2 (ai + ai+1)

1
2 (ai−1 + ai)

|ψ(a, 0)|2 da

and were led thus to write an equation that can be notated

xcenter of mass(t) =
∑

i

∫ 1
2 (ai + ai+1)

1
2 (ai−1 + ai)

ψ(a, 0)∗x(t; ai)ψ(a, 0) da

and in the refined limit becomes

=
∫ ∞

0

ψ(a, 0)∗x(t; a)ψ(a, 0) da (7)

Notice now that in the Heisenberg picture (6) becomes

〈x〉t =
∫ ∞

0

∫ ∞

0

ψ∗(x, 0) dx (x|x(t)|y) dy ψ(y, 0) (8)

For unobstructed free fall (Part A) the Hamiltonian is H = 1
2m p2 + mg x and

the Heisenberg equations of motion read

ẋ = − 1
i�

[
H , x

]
= 1

m p

ṗ = − 1
i�

[
H , p

]
= −mg I

which give p(t) = p0 −mg t I whence ẋ = 1
m p0 − g t I whence

x(t) = x0 + 1
m tp0 − 1

2g t2 I

Since we plan to “drop” (not to “launch”) our particles we set p0 = 0 and
obtain

(x|x(t)|y) = (x|
{

x0 − 1
2g t2

}
|y) =

{
y − 1

2g t2
}
· δ(x− y)

The free-fall analog of (7) could on this basis be written

〈x〉free fall
t =

∫
ψ∗(y, 0)

{
y − 1

2g t2
}
ψ(y, 0) dy (9)

3 Note that the subsequent motion of the bouncer is mass-independent!
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where x(t; y) =
{
y− 1

2g t2
}

describes the classical motion of a ball that at time
t = 0 was dropped from height y. For a quantum bouncer we expect therefore
to have

〈x〉bouncer
t =

∫
ψ∗(y, 0)

{
x(t; y)

}
ψ(y, 0) dy (10.1)

where (see again equations (1))

x(t; y) =
∑

n

[
y − 1

2g
(
t− n

√
8y/g

)2] (10.21)

· UnitStep[
[
y − 1

2g
(
t− n

√
8y/g

)2]
]

= y
[

2
3 − 4

π2

∞∑
k=1

(−)k 1
k2 cos

[
kπ

√
g/2y t

]]
(10.22)

describes the classical motion of a bouncer that at time t = 0 was dropped from
height y. But in the quantum mechanical equation (10.1) we have recovered
precisely the equation that at (7) served to describe the center of mass motion
of a classical population: quite unexpectedly, quantum mechanics has acquired
a classical face.4

Our prior experience was with an illustrative instance of the Gaussian
distribution

ψ∗(y, 0)ψ(y, 0) = 1
s
√

2π
e−

1
2

[ y − A
s

]2

↓
= 4

7
√

2π
e−

1
2

[
4
7 (x− 15)

]2

and when we feed this information into (10) we find that Mathematica prefers
to work with (10.22) and to integrate numerically; I omit the results of those
experiments, but can report that they do tend to confirm the correctness of (10).

5. Steady distributions. I begin with some general remarks. Let |ψ)0 be, in
particular, an eigenstate of the Hamiltonian H : H |n) = En|n). Then in the
Schrödinger picture

|n)0 −→ |n)t = e
− i

�
Ent · |n)0

and it becomes obvious that

(n|A |n) is a constant of the motion

4 The argument has, however, one formal defect: For a quantum bouncer
one has

H = 1
2m p2 + Vbouncer(x)

where the “bouncer potential” Vbouncer(x) is |�-shaped. We have not attempted
to extract (10.2) from the operator algebra of the problem, as a solution of the
Heisenberg equations of motion. This was easy for unrestricted free fall, but
for the bouncer seems at the moment to be almost unapproachable.
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for every time-independent observable A—this whether or not A happens to
refer to a “constant of the motion:”

[
H , A

]
= 0 . To make the same point

another way: the quantum motion of (ψ|A |ψ) is an interference effect, a
consequence of two or more eigencomponents buzzing at different frequencies.5

In x-representation we write ψn(x, t) ≡ (x |n)t and, in the cases A = xν , have
∫

ψ∗
n(x, t)xνψn(x, t) dx =

∫
ψ∗

n(x, 0)xνψn(x, 0) dx : ν = 0, 1, 2, . . .

Not only the mean but the position moments of all orders are seen to be constant
when the quantum system is in an energy eigenstate.

Return now from generalities to the bouncer specifics. We expect—for the
unsurprising reason just explained—to have

〈x〉n =
∫ ∞

0

ψ∗
n(y, t) y ψn(y, t) dx = unchanging mean (11)

if ψn(x, t) refers to the buzzing nth bouncer eigenfunction. Which brings me to
my question: Can we—as an instance of (10.1)—expect to have

=
∫ ∞

0

ψ∗
n(y, 0)x(t, y)ψn(y, 0) dy (12)

and to interpret that construction as having to do with the “invariable center
of mass of a suitably-constructed dropped population”? No! For when

x(t) = U+(t)x U(t) =
∑
a, b

|a)e
+ i

�
Eat(a|x |b)e+

i
�
Ebt(b |

is hit with (n| on the left and |n) on the right the t-dependence drops away:
one is left with (n|x(t)|n) = (n|x |n) which in x-representation is not (12) but
(11).

I have, however, performed—and will now describe—some numerical
experiments based upon the faulty construction (12) which lead to a curious
conjecture. If n is large then |ψn(y, 0)|2 is so wildly oscillatory that Mathematica
has difficulty with the

∫
, so I confine my remarks to the low-order case

ψ4(y, 0) = 1.09787 Ai(y − 6.78671)

The distribution |ψ4(y, 0)|2 is shown in Figure 11. Mathematica complained a
lot when asked to list values of the numerical integrals

∫ 12

0

|ψ4(y, 0)|2x(tk, y) dy with tk ≡ 1
5k : k = 0, 1, 2, . . . , 100 (13)

5 The point at issue become equally obvious in the Heisenberg picture if one
writes

U(t) =
∑
m

|m) e
− i

�
Ent(m|
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6.786

0.1

0.2

0.3

Figure 11: Graph of the distribution |ψ4(y, 0)|2 on which were
based the experiments described in the text.

but seemed indifferent to whether I used (10.21) or (10.22) to define x(t; y):
in practice I used an 11-term Fourier series, and convinced myself that no
significant error would be introduced if the upper limit on the integral were
taken to be 12 instead of ∞. The data thus generated is displayed in Figure 12.
That the classical center of mass initially descends is very easy to understand,
and no great mystery attaches to the fact that it subsequently exhibits damped
oscillations. What I do find a little surprising is that after awhile (see Figure 13)
the oscillations appear to have damped to extinction: center of mass has come
to rest at 3.01685. It was anticipated that

(4|x |4) =
∫ ∞

0

y |ψ4(y, 0)|2 dy = 4.42447 = 2
3 · 6.78671

but I did not anticipate—and can provide no explanation for the fact—that
seemingly

lim
t→∞

∫ ∞

0

|ψ4(y, 0)|2x(tk, y) dy = 3.01685 ≈ 3.01632 = 2
3 · 4.42447

Because other examples gave similar results I am led to conjecture that for
classical populations that have been structured by quantum mechanical energy
eigenfunctions one—in all cases—has

lim
t→∞

∫ ∞

0

|ψn(y, 0)|2x(tk, y) dy = 2
3 · (n|x |n) (14.1)

The striking stability of the asymptotic value seems to suggest that bouncer
anharmonicity has brought the population to some kind of statistical equilibrium.
Looking to the second moment, we anticipate/confirm6 that

(4|x2|4) =
∫ ∞

0

y2 |ψ4(y, 0)|2 dy = 24.56500 = 8
15 · (6.78671)2

6 See Part B, page 9.
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20 40 60 80 100

1

2

3

4

5

6

Figure 12: Initial center of mass motion, computed from (13).
The center of mass of the quantum mechanically structured classical
population initially drops, then rebounds, but the oscillations become
progressively more indistinct as—owing to the anharmonicity of
classical bouncing—the population grows increasingly incoherent.

20 40 60 80 100

1

2

3

4

5

6

Figure 13: Subsequent center of mass motion, computed from (13)
with k = 200, 201, . . . , 300. By this time the phase incoherence
appears to have become complete, and to have achieved a steady
state. Add 200 to each of the numbers that decorate the horizontal
axis: Mathematica was indicating placement in a list rather than
value of k. The averaged point value is 3.01685.

and on the basis of some relatively rough calculation obtain

lim
t→∞

∫ ∞

0

|ψ4(y, 0)|2 [x(tk, y)]2 dy = 13.0146 ≈ 13.1013 = 8
15 · (4|x2|4)

—the suggestion being that in the general 2nd-order case

lim
t→∞

∫ ∞

0

|ψn(y, 0)|2 [x(tk, y)]2 dy = 8
15 · (n|x2|n) (14.2)
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It seems reasonable to hope that we might extend (14) to all orders and, on the
basis of that information, construct a detailed description of the equilibrated
classical population that is latent in the quantum distribution |ψn(y, 0)|2.

5 10 15 20 25

0.05

0.1

0.15

0.2

Figure 14: Normalized exponential distribution

B(x;β) ≡ βe−βx : β > 0

in the case β = 5. In that case 〈x〉 = 5 and 〈x2〉 = 50.

With thermal physics in the back of our minds it becomes natural to
ask: What can be said concerning asymptotic moment motion if the initial
population is exponentially weighted (Figure 14)? Numerical experimentation
(Figures 15 & 16) suggest that here again the moments of all orders rapidly
stabilize

asymptotic first moment = 2
3 · initial first moment

asymptotic second moment = 8
15 · initial second moment

...

. . .where the factors are those latent in the classical distribution7

Q(x; a) ≡ 1
2
√
a
√
a− x

: 0 � x � a (15)

which is readily found to supply

〈x1〉 = 2
3 · a

〈x2〉 = 8
15 · a2

〈x3〉 = 16
35 · a3

...
〈xn〉 = 2 · 4 · 6 · · · 2n

3 · 5 · 7 · · · (2n + 1)
· an

7 See Part B, §3, equation (8). It is of physical interest that this distribution
is independent of both m and g.
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Figure 15: Data obtained by numerical evaluation of

∫ 35

0

B(y, 5)x(y, tk) dy with tk = 1
5k : k = 0, 1, 2, . . . 100

and with x(y, t) approximated by the first eleven terms of (10.22)
with g set equal to 2. Evidently

asymptotic mean ≈ 3.32631 ≈ 3.33333 = 2
3 · 5

20 40 60 80 100

10

20

30

40

50

Figure 16: Data obtained by numerical evaluation of

∫ 35

0

B(y, 5)[x(y, tk)]2 dy

Evidently

asymptotic 2nd moment ≈ 26.8188 ≈ 26.6667 = 8
15 · 50
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What we presently lack is a theory on the basis of which we might have
predicted this experimental result, and that would enable us to understand
what has acquired now the status of an urgent problem: Why does the Gaussian
population not stabilize? Why does it exhibit extinction and revival ?

6. Gravitational applications of some operator algebra. Hans Zassenhaus, in
unpublished work done sometime prior to , has established8 that for all
A and all B

eA+B = eA · eB · eC2 · eC3 · · ·
with

C2 = − 1
2 [A , B ]

C3 = 1
6 [A , [A , B ]] + 1

3 [B , [A , B ]]
...

With H = 1
2m p2 +mg x in mind we set A =αp2, B = β x and, using [x , p ] = i� I ,

compute [A , B ] = −2i�αβ p , C2 = i�αβ p , C3 = 2
3�2αβ2 I , Cn>3 = 0 giving

eαp2+β x = eαp2 · eβ x · ei�αβ p · e 2
3 �

2αβ2

It is, however, an implication of Zassenhaus’ identity that

eβ x · ei�αβ p = ei�αβ p · eβ x · e−�
2αβ2

so we have the p x-ordered expression

= eαp2 · ei�αβ p · eβ x · e− 1
3 �

2αβ2
(16)

Setting α = − i
�

1
2m t and β = − i

�
mgt we use (16) to obtain

U free fall(t) ≡ e−
i
�
{ 1

2m p2+mg x}t

= e−
i
�
{ 1

2m p2+ 1
2 gtp}t · e− i

�
{mg x}t · e− i

�
{ 1

6 mg2t3} (17)

which presents the free-fall propagation operator in p x-ordered form.

To illustrate the utility of (17) I look now with its aid to the construction
of the propagator. We use the “mixed representation trick,”9 writing

(x|U(t)|y) =
∫

(x|p) dp(p|U(t)|y)

=
∫

(x|p) dp e−
i
�
{ 1

2m p2+ 1
2 gtp}t · e− i

�
{mgy}t · e− i

�
{ 1

6 mg2t3}(p|y)

But10

(x|p)(p|y) = 1
he

i
�

p(x−y)

8 See advanced quantum topics (), Chapter 0, page 33.
9 See pages 38–43 in the notes just cited.

10 See equation (80) on page 36 of those same notes.
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So if we allow ourselves to pretend for the moment that i t
�2m has a positive real

part (which it is our intention to “turn off” at the end of the calculation) then
we confront a Gaussian integral, formal execution of which yields

(x|U(t)|y) =
√

m
iht exp

{
i
�

[
m
2t (x− y)2 − 1

2mgt(x + y) − 1
24mg2t3

]}
(18)

We recognize [etc.] to be the classical free-fall action S(x, t; y, 0) encountered
at (9) in Part A. And we recognize (18) to be in precise agreement with the
description of the free-fall propagator K(x, t; y, 0) to which at (61) in Part A we
were led by quite a different line of argument—an argument that made heavy
use of properties of the Airy function Ai(z).

I press (17) now into service toward a different objective: In the Heisenberg
picture (see again page 9) we have

x −→ x(t) = U –1(t) x U(t)
p −→ p(t) = U –1(t) p U(t)

}
(19)

and are placed by (17) in position to develop explicit descriptions of x(t) and
p(t). Writing

x e−
i
�
{ 1

2m p2+ 1
2 gtp}t =

[
x
x e−

i
�
{ 1

2m p2+ 1
2 gtp}t

]
p

I use a technique described at (15) on page 7 of Chapter 2 in the notes cited
previously8 to reverse the ordering of the expression on the right:

=
[

p
exp

{
−�

i
∂2

∂x∂p

}
x e−

i
�
{ 1

2m p2+ 1
2 gtp}t

]
x

=
[

p
e−

i
�
{ 1

2m p2+ 1
2 gtp}t

{
x + 1

m tp + 1
2g t

2
}]

x

= e−
i
�
{ 1

2m p2+ 1
2 gtp}t

{
x + 1

m tp + 1
2g t

2 I
}

Therefore
x(t) = x + 1

2g t
2 I + e+ i

�
{mg x}t · 1

m tp · e− i
�
{mg x}t

But by the same argument

p e−
i
�
{mg x}t =

[
p
p e−

i
�
{mg x}t

]
x

=
[

x
exp

{
+�

i
∂2

∂x∂p

}
p e−

i
�
{mg x}t

]
p

=
[

x
e−

i
�
{mg x}t

{
p−mgt

}]
p

= e−
i
�
{mg x}t

{
p −mgt I

}
:

{
elaborate derivation of
a simple “shift rule”
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so

x(t) = x + 1
2g t

2 I + 1
m tp − g t2 I

= x − 1
2g t

2 I + 1
m tp (20.1)

Similarly

p(t) = e+ i
�
{mg x}t p e−

i
�
{mg x}t

= p −mgt I (20.2)

Equations (20) spell out the detailed substance of “t -parameterized unitary
similarity transformation rule” (19).

We are reassured but not surprised by the observation that[
x(t), p(t)

]
=

[
x , p

]
+ 0 + 0 + 0 + 0 + 0 = i� I : all t

I say “not surprised” because it is (in the Heisenberg picture) universally the
case that [

U –1(t) x U(t), U –1(t) p U(t)
]

= U –1(t)
[
x , p

]
U(t) = i� I

From (20) it follows that

d
dt x(t) = 1

m

{
p −mgt I

}
= 1

m p(t) (21.1)
d
dt p(t) = −mg I (21.2)

which are precisely Heisenberg’s equations of free fall motion, as encountered
already on page 9. They are structurally identical to their classical counterparts:
Hamilton’s canonical equations of unobstructed free fall. Differentiating once
again we obtain

d2

dt2 x(t) = −g I : all m

which might be said to describe “quantum mechanical free fall according to
Newton”!

All of which, though gratifying, is surprising in no respect . . .but does
inspire confidence in the accuracy of (17), and in the effectiveness of our operator
management techniques.

Pursuant to the discussion in §10, §11 and (especially) §23 of Part A—all
of which radiated from the notion that “free fall” is free motion referred to a
uniformly accelerated frame—we observe that while (17), written

Ug(t) = e−
i
�
{ 1

6 mg2t3} · e− i
�
{ 1

2m p2+ 1
2 gtp}t · e− i

�
{mg x}t

describes quantum dynamical motion in the presence of a uniform gravitational
field, we have only to set g = 0 to obtain the unitary operator

U0(t) = e−
i
�
{ 1

2m p2}t
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that describes free motion, motion in the absence of such a field. And that we
have

Ug(t) = GGG(t; g)U0(t) (22)

provided we set

GGG(t; g) = Ug(t)U –1
0 (t)

= e−
i
�
{ 1

6 mg2t3} · e− i
�
{ 1

2m p2+ 1
2 gtp}t · e− i

�
{mg x}t · e+ i

�
{ 1

2m p2}t

Drawing once again on the operator reordering procedure employed already
twice before, we have

e−
i
�
{mg x}t · e+ i

�
{ 1

2m p2}t =
[

x
e−

i
�
{mg x}t · e+ i

�
{ 1

2m p2}t
]
p

=
[

p
exp

{
−�

i
∂2

∂x∂p

}
e−

i
�
{mg x}t · e+ i

�
{ 1

2m p2}t
]
x

=
[

p
e−

i
�
{mg x}t · exp

{
mgt∂

∂p

}
e+ i

�
{ 1

2m p2}t
]
x

=
[

p
e−

i
�
{mg x}t · e+ i

�
{ 1

2m (p+mgt)2}t
]
x

= e+ i
�
{ 1

2m (p+mgt I )2}t · e− i
�
{mg x}t

= e+ i
�
{ 1

2m p2}t · e+ i
�
{gt2 p+ 1

2 mg2t3 I}t · e− i
�
{mg x}t

giving

GGG(t; g) = e
i
�
{( 1

2− 1
6 )mg2t3} · e i

�
{(1− 1

2 )gt2 p} · e− i
�
{mg x}t

= e
i
�
{ 1

2 gt2 p} · e− i
�
{mg t x} · e+ i

�
{ 1

3 mg2t3} : p x-ordered (23.1)

= e−
i
�
{mg t x} · e i

�
{ 1

2 gt2 p} · e− i
�
{( 1

2− 1
3 )mg2t3}

= e− i
�
{ 1

6 mg2t3} · e− i
�
{mg t x} · e i

�
{ 1

2 gt2 p} : x p-ordered (23.2)

in connection with which we notice that

GGG(0; g) = I : all g
GGG(t; 0) = I : all t

}
(24)

What, by these exertions, have we gained? Suppose that |Ψ) evolves freely:

|Ψ)0 −→ |Ψ)t = U0(t)|Ψ)0

Hit that statement with the unitary operator GGG(t; g), introduce the notation

|Ψ)t ≡ GGG(t; g)|Ψ)t

and—by (22)—obtain

|Ψ)0 −→ |Ψ)t = Ug(t) |Ψ)0
|Ψ)0 = |Ψ)0
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according to which |Ψ) evolves by free fall. In the x-representation we have

Ψ(x, t) = e− i
�
{mgtx+ 1

6 mg2t3} · Ψ(x + 1
2g t

2, t) (25)

as an immediate consequence of (23.2). Evidently GGG(t; g) provides a (picture-
independent, also representation-independent) description of the quantum
mechanical effect
• of “turning on g,” or equivalently
• of adopting a uniformly accelerated reference frame

and, of course, GGG
–1(t; g) describes the reverse of those operations. We have

been brought here by operator manipulations to conclusions identical to those
reached in §23 of Part A. The present line of argument is, I would argue, to be
preferred: it is swifter, and avoids explicit reference to “gauge factors.”

7. The “dropped eigenfunction” problem—revisited. I return now to the problem
addressed in §25 of Part A. Consider the p -indexed xt-separated functions

Ψp(x, t) ≡ 1√
h
e

i
�

px · e− i
�

1
2m p2t

—each of which satisfies the free particle Schrödinger equation

− �
2

2m∂2
xψ = i�∂tψ

and describes what might be called a “buzzing eigenfunction” of the system
H = 1

2m p2. We note that Ψ+p and Ψ−p associate with the same spectral
value E = p2/2m. The free particle energy spectrum is (except at p = 0)
doubly degenerate: the system supports both left-running and right-running
monochromatic waves of every frequency.

Now use (25) to “drop” such a function Ψp(x, t). It becomes

Ψp(x, t) = 1√
h
e− i

�
{mgtx+ 1

6 mg2t3} · e i
�

p(x+ 1
2 gt2) · e− i

�

1
2m p2t

= 1√
h

exp
{

i
�

[
x(p−mgt) + 1

6m2g (p−mgt)3 − 1
6m2gp

3
]}

(26)

which (ask Mathematica) demonstrably satisfies{
− �

2

2m∂2
x + mgx

}
ψ = i�∂tψ (27)

but does not possess the xt-separated form of a “buzzing eigenfunction.” Nor,
for that matter, does t enter linearly into the exponent, though linear entry is
the sine qua non of buzzery. To circumvent those interrelated difficulties—to
construct buzzing eigenfunctions of the free-fall Hamiltonian—we must take
the dropped functions in suitably contrived linear combinations11

Ψfree fall(x, t) =
√
k 1

2π

∫
c(p) ·

√
hΨp(x, t) ·

(
1

2m2g�

) 1
3 dp (28)

11 Here ℘ ≡ (2m2g�)
1
3 = �/�g = �k is (see pages 22 and 51 in Part A) a

“natural momentum.” It and the other factors have been introduced for the
dimensional reasons discussed on the next page.
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And it is pretty clear how to proceed: set

c(p) = exp
{

i
�

1
6m2gp

3
}

and obtain

Ψfree fall
0 (x, t) =

(
1

2m2g�

) 1
3
√
k 1

2π

∫
exp

{
i
�

[
x(p−mgt) + 1

6m2g (p−mgt)3
]}

dp

=
√
k 1

2π

∫ +∞

−∞
exp

{
i
[
kxu + 1

3u
3
]}

du

=
√
k · Ai(kx) by definition: see Part A, page 25

The maneuver
p 	−→ u with u3 ≡ 1

2m2g (p−mgt)3

that was intended to kill the extraneous t -dependence has in fact killed all the
t’s : we have been led to a static solution of (27), a solution that just stands
there (doesn’t fall, doesn’t buzz), a zero energy solution (whence the 0).

More generally, we set

c(p) = exp
{

i
�

[
1

6m2gp
3 − ap

]}
(29)

and (by x(p−mgt) − ap = (x− a)(p−mgt) −mgat) obtain

Ψfree fall
a (x, t) =

√
k · Ai(k[x− a]) · e− i

�
mgat (30)

which buzzes all right, but—remarkably—does not fall . Equations (29) and
(30) are identical to results achieved in §25 of Part A, but have been obtained
here by what I consider to be a more transparent line of argument. The
relative efficiency of the present argument can be attributed to the availability
of the operator identities that culminate in the construction (23) of the “drop
operator” GGG(t; g). Notice particularly that the free particle spectral degeneracy
has been lifted by the integration process (28).

One delicate point merits comment: the free-particle eigenfunctions Ψp(x,t)
are not normalizable, do not describe quantum states, are intended to be
assembled into normalized wavepackets

ψ(x, t) =
∫

Ψp(x,t) dp (p|ψ)

We have [(p|ψ)] = 1√
momentm

and have contrived to have [Ψp] = 1√
momentm· length

so as to insure that [ψ(x, t)] = 1√
length

. The dropped free-particle eigenfunctions

Ψp(x,t), even after assembly into free-fall eigenfunctions Ψfree fall
a (x, t), suffer

from similar defects: they await assembly into normalized wavepackets, but by
a procedure of the dimensionally distictive design

ψfree fall(x, t) =
∫

Ψfree fall
a (x, t) daf(a)
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If we adopt the convention that daf(a) is dimensionless then we must have

[Ψfree fall
a (x, t)] = 1√

length

This is accomplished by the
√
k -factor in (30).12

We have several times had occasion to remark13 the striking fact that the
free-fall eigenfunctions are—for reasons foreshadowed already in the classical
physics—rigid translates of one another. In §18 of Part A it was remarked that,
for the reason just stated, the x-translation operator serves also/simultaneously
as the energy-translation or “ladder” operator. The objects of most recent
interest have been buzzing eigenfunctions, the translation properties of which
are a bit more intricate: it follows from (30) that

Ψfree fall
a (x− ξ, t) =

√
k · Ai(k[x− ξ − a]) · e− i

�
mgat

=
√
k · Ai(k[x− (a + ξ)]) · e− i

�
mg(a+ξ)t · e+ i

�
mgξt

= Ψfree fall
a+ξ (x, t) · e+ i

�
mgξt

which is to say:

Ψfree fall
a+ξ (x, t) = exp

{
− ξ

[
∂
∂x + i

�
mgt

]}
· Ψfree fall

a (x, t) (31)

8. Can “Schwinger’s trick” be adapted to the free fall problem? Julian Schwinger
was a man of famously many tricks: the one I have now in mind is the clever
way in which he once exploited operator ordering techniques to extract the
eigenvalues, eigenfunctions and other properties of quantum oscillators from
the construction

Uosc(t) = e−
i
�
{ 1

2m p2+ 1
2 mω2 x2}t

Schrödinger himself had noticed that Hosc ≡ 1
2m p2 + 1

2mω2 x2 can be written

Hosc = �ω(a+ a + 1
2 I)

with
a ≡

√
mω/2� (x + i 1

mω p)

a+ ≡
√
mω/2� (x + i 1

mω p)

Schwinger was clever enough to establish that

Uosc(t) = e−iω( a+ a+ 1
2 I ) t

=
∑

n

e−
i
�
(n+ 1

2 )�ωt 1√
n!

(a+)n|0)(0|(a)n 1√
n!

: ordered (32)

12 See in this regard also (50) in Part A.
13 See Part A, page 26.
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where |0)(0| ≡
∑

k
1
k! (−)k(a+)k(a)k projects onto a state |0) that is annihilated

by a : a |0) = 0. It became then a simple matter to establish that

En = (n + 1
2 )�ω : n = 0, 1, 2, . . .

and that the functions

ψn(x) ≡ (x|n) with |n) ≡ 1√
n!

(a+)n|0)

are precisely the normalized oscillator eigenfunctions (Hermite functions)
described in every quantum text.14 The question before us: What might
Schwinger have to say about the system

Ug(t) = e−
i
�
{ 1

2m p2+mg x}t

(where I have reverted to an abbreviated notation introduced on page 18)?

The propagator (x|Ug(t)|x0) was subject to detailed development in §15 of
Part A, and more recently in the discussion that led to (18). But our interest
here lies not in the possibility of writing

(x|Ug(t)|x0) =
√

m
iht e

i
�
· classical action

but in the “spectral” representation of Ug(t). The translation operator T(a)
was defined

T(a) ≡ e−
i
�

ap

at page 33 in Part A, and has obviously the properties

T+(a) = T –1(a) = T(−a)

From (17)

Ug(t) = e−
i
�
{ 1

6 mg2t3} · e− i
�
{ 1

2m p2+ 1
2 gtp}t · e− i

�
{mg x}t

it follows by

e−
i
�
{mg x}t · e− i

�
ap = e−

i
�

ap · e− i
�
{mg x}t · e−( i

�
)2mgat[ x ,p ]

= e−
i
�

ap · e− i
�
{mg x}t · e− i

�
mgat

that
T+(a)Ug(t)T(a) = e−

i
�

mgat · Ug(t) (33)

Observe that if, in rough imitation of (32), we allowed ourselves to write

Ug(t) =
∫ +∞

−∞
e−

i
�

mgbt T(b)|0)(0|T+(b) db (34)

14 For details and references relating to “Schwinger’s oscillator trick” see
advanced quantum topics (), Chapter 0, pages 40–42.
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then (33) would become automatic:

T+(a)Ug(t)T(a) =
∫

e−
i
�

mgbt T(b− a)|0)(0|T+(b− a) db

= e−
i
�

mgat ·
∫

e−
i
�

mg(b−a) t T(b− a)|0)(0|T+(b− a) db

= e−
i
�

mgat · Ug(t)

The initial condition Ug(0) = I requires∫
|b)db(b| = I with |b) ≡ T(b) |0) (35.1)

while we would have Ug(t1) · Ug(t2) = Ug(t1 + t2) if

(0|T+(a)T(b)|0) = (a|b) = δ(a− b) (35.2)

Moreover15

H Ug(t) =
∫ +∞

−∞
e−

i
�

mgat H T(a)|0)(0|T+(a) da

=
∫ +∞

−∞
e−

i
�

mgat T(a)
{

H + mga I
}
|0)(0|T+(a) da

while

i�∂t Ug(t) =
∫ +∞

−∞

{
mga

}
e−

i
�

mgat T(a)|0)(0|T+(a) da

We therefore have
{

H − i�∂t

}
Ug(t) = 0 provided{

1
2m p2 + mg x

}
|0) = 0|0) (36)

From (36) we are led back directly to Airy’s function, while in (35) we read
an allusion to the remarkable orthogonality/completeness properties of the
translates of that function. I will not belabor the details.

Concluding remarks. This work began as an attempt to account theoretically
for the surprising numerical discovery that the center of mass of a classical
population of bouncing balls mimics the quantum motion of the mean of a
“bouncing wavepacket”—this even though the wavepacket refers to the state
of a single particle. The point at issue was found to be not at all mysterious
if one works in the Heisenberg picture. . .where it is not |ψ) but the operators
that move. The latter circumstance led me to look in fair detail into some of
the operator-algebraic aspects of the free fall system. I was encouraged in the
latter effort by the fact that Reece Heineke is (under my direction) writing a
thesis on the quantum applications of some operator methods and had—quite
coincidentally—elected to take the free fall propagator as a primary test object.
I must emphasize that operator methods surveyed in these pages all pertain to
unobstructed free fall, and that I have at present nothing to say about how they
might be adapted to the bouncer problem.

15 I draw here on equations (69) in Part A.


